Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Genet ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604752

ABSTRACT

BACKGROUND: Reanalysis of exome/genome data improves diagnostic yield. However, the value of reanalysis of clinical array comparative genomic hybridisation (aCGH) data has never been investigated. Case-by-case reanalysis can be challenging in busy diagnostic laboratories. METHODS AND RESULTS: We harmonised historical postnatal clinical aCGH results from ~16 000 patients tested via our diagnostic laboratory over ~7 years with current clinical guidance. This led to identification of 37 009 copy number losses (CNLs) including 33 857 benign, 2173 of uncertain significance and 979 pathogenic. We found benign CNLs to be significantly less likely to encompass haploinsufficient genes compared with the pathogenic or CNLs of uncertain significance in our database. Based on this observation, we developed a reanalysis pipeline using up-to-date disease association data and haploinsufficiency scores and shortlisted 207 CNLs of uncertain significance encompassing at least one autosomal dominant disease-gene associated with haploinsufficiency or loss-of-function mechanism. Clinical scientist reviews led to reclassification of 15 CNLs of uncertain significance as pathogenic or likely pathogenic. This was ~0.7% of the starting cohort of 2173 CNLs of uncertain significance and 7.2% of 207 shortlisted CNLs. The reclassified CNLs included first cases of CNV-mediated disease for some genes where all previously described cases involved only point variants. Interestingly, some CNLs could not be reclassified because the phenotypes of patients with CNLs seemed distinct from the known clinical features resulting from point variants, thus raising questions about accepted underlying disease mechanisms. CONCLUSIONS: Reanalysis of clinical aCGH data increases diagnostic yield.

2.
Reprod Biomed Online ; 43(5): 899-902, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34497033

ABSTRACT

RESEARCH QUESTION: Does a genetic condition underlie the diagnosis of primary ovarian insufficiency (POI) in a 21-year-old woman with primary amenorrhoea? DESIGN: A karyotype and genetic testing for Fragile X syndrome was undertaken. A next-generation sequencing panel of 24 genes associated with syndromal and non-syndromal POI was conducted. RESULTS: A nonsense variant c.1336G>T, p.(Glu446Ter) and whole gene deletion in STAG3 were identified. CONCLUSIONS: Biallelic loss of function variants in STAG3 are associated with primary ovarian failure type 8 and are a rare cause of POI.


Subject(s)
Cell Cycle Proteins/genetics , Mutation , Primary Ovarian Insufficiency/genetics , Amenorrhea/genetics , Codon, Nonsense/genetics , Female , Gene Deletion , High-Throughput Nucleotide Sequencing , Humans , Karyotyping , Pedigree , Puberty/genetics , Young Adult
3.
Elife ; 102021 03 17.
Article in English | MEDLINE | ID: mdl-33729154

ABSTRACT

Understanding the effectiveness of infection control methods in reducing and preventing SARS-CoV-2 transmission in healthcare settings is of high importance. We sequenced SARS-CoV-2 genomes for patients and healthcare workers (HCWs) across multiple geographically distinct UK hospitals, obtaining 173 high-quality SARS-CoV-2 genomes. We integrated patient movement and staff location data into the analysis of viral genome data to understand spatial and temporal dynamics of SARS-CoV-2 transmission. We identified eight patient contact clusters (PCC) with significantly increased similarity in genomic variants compared to non-clustered samples. Incorporation of HCW location further increased the number of individuals within PCCs and identified additional links in SARS-CoV-2 transmission pathways. Patients within PCCs carried viruses more genetically identical to HCWs in the same ward location. SARS-CoV-2 genome sequencing integrated with patient and HCW movement data increases identification of outbreak clusters. This dynamic approach can support infection control management strategies within the healthcare setting.


Subject(s)
COVID-19/transmission , Cross Infection/transmission , SARS-CoV-2/genetics , Aged , COVID-19/virology , Contact Tracing , Cross Infection/virology , Female , Health Personnel , Humans , Infectious Disease Transmission, Patient-to-Professional , Infectious Disease Transmission, Professional-to-Patient , Male , SARS-CoV-2/isolation & purification , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...